

Snowmaking in Austria

Greener and more sustainable than assumed? Empirical data: Water – Energy – CO₂ Emissions Paper for PhD – University of Innsbruck (AUT) – Preliminary findings

Snowmaking: Adaptation to Climate Change

- Winters in Austria have warmed by 1.7 degrees Celsius since pre-industrial times (Olefs et al., 2021, p. 23)
- Duration of winters: Snow cover period shortened by 40 days since 1961, especially below an altitude of 1,500 meters (ZAMG, 2022)
- ➢ Pressure on ski tourism → adaptation measures → increasingly powerful snowmaking systems (Steiger & Mayer, 2008)

Social and scientific debate on snowmaking

- ... has been taking place for decades. Topics of conflict include:
- → use of resources (energy, water)
- → Ecological footprint of snowmaking (adaptation or maladaptation?) (Scott et al., 2022) and skiing (Die ZEIT, 2022)

Today's presentation: Preliminary findings

... from a study at the University of Innsbruck (Austria) for the *Management* PhD program

Research Gap

- > No evidence-based study on the resource consumption of snowmaking neither in Austria nor worldwide
- Hardly any knowledge about greenhouse gas emissions from snowmaking

Research questions

- > What is the annual demand for electricity and water for snowmaking in Austria?
- > What is its annual carbon footprint?
- What are the most important key figures, on average, across Austria that ski resort operators can use as a benchmark to improve their economic and ecological sustainability?

This study aims to

- improve the level of knowledge on snowmaking and thus,
- ✤contribute towards a more economically and ecologically sustainable development of ski tourism.

- Unstructured interviews with experts from three ski areas
 - ... and with Professor Robert Steiger (University of Innsbruck)
 - ... to find out which parameters are best suited for a questionnaire
- The questionnaire was then created and refined with the interviewees
- Questionnaire:
 - \rightarrow First part: structural data e.g. skier visits, size of area equipped with snowmakers
 - → Second part: consumption data key figures used in the literature, e.g. water and energy consumption per hectare
- > 141 companies in Austria contacted
- Investigation period: May 2023 to April 2024
- > 12 months of active courting for data (ski resorts seem to be very communication averse when it comes to data)
- Ongoing plausibility checks
- ➢ 6 evaluated ski seasons:
 - 5 seasons before Covid (2014/15 to 2018/19) and the first ski season after the pandemic (2022/23)

- > 28 ski areas achieved a data quality that meets the requirements of this study
- Data from 7 Austrian states (out of 9)
- Sample total: 3,921 hectares equipped with snowmakers
- Sample total: 16.3 million skier visits ... which corresponds to a share of <u>31.1 percent of the Austrian skier visits (WKO 2023a)</u>
- Mean sea level (of all mountain and valley stations): 1,433 m
 - 3 of the 28 ski areas were classified as very small (under 4 kilometers of slopes)
 - 3 ski areas are small (5 to 14 km)
 - 10 ski areas are medium-sized (15 to 49 km)
 - 5 ski areas are large (50 to 99 km)
 - 7 ski areas are very large (more than 100 km of slopes)

Methods

- Extrapolation of the sample. Variable: skier visits
- Calculated energy requirement per m³ of water turnover: 6.32 kWh
- Assumed water to snow ratio: 1:1.75

Total annual water demand for technical snowmaking in Austria

 \rightarrow Extrapolation per skier visits (52.5 million)

 \rightarrow 43.4 million m³

Total annual energy demand for technical snowmaking in Austria

→ Extrapolation per skier visits (52.5 million)

→ 273 GWh

Austrian Association of Ropeways, September 2023: Estimates in scientific literature:

205 GWh (WKO, 2023b, p. 63) **355 to 950 GWh** (Steiger et al. 2021, p. 115-116)

Total annual CO2 emissions for technical snowmaking in Austria

- \rightarrow Extrapolation per skier visits (52.5 million)
- → Greenhouse gas calculator (Umweltbundesamt 2024a)
- \rightarrow Conversion with: (1) Renewable energy 1 GWh = 10t (2) Austrian Power Mix 1 GWh = 230t

\rightarrow 2,751 tonnes

Total number of snowmakers:

Ratio of fan guns to lances: 48.6 to 51.4 %. Number of snowmakers per ha: Number of snowmakers per 1,000 Skier Visits:	17,388 fan g 2.8 0.7
Average operating time:	171 h
Km of slopes equipped with snowmakers, % of total km:	81.7 %
Snow production from green energy:	99.9 %
Water per ha:	3,436 m ³
Energy per ha:	21,597 kV
Energy per 1 m ³ snow	3.5 kWh
Energy per Skier Visit	5.2 kWh
CO ₂ per Skier Visit	52 g

= equal to 0.4 km driven with a gasoline powered car

35,735

17,388 fan guns and 18,347 lances 2.8 0.7
171 h
81.7 %
99.9 %
3,436 m³
21,597 kWh
3.5 kWh
5.2 kWh

Power consumption

Snowmaking Snowmaking, cable cars and lifts		Snowmaking, cable cars and lifts
>	273 GWh	Approx. 819 GWh
>	= 0.43 %	= 1.29 %
	of the <u>annual total elec</u>	ctricity consumption in Austria: 63,700 GWh (Bundesministerium für Klimaschutz 2024)

CO₂ emissions

 \geq

 \succ

Snowmaking	Snowmaking, cable cars and lifts	
2,751 t	Approx. 8,253 t	

➤ = 0.0038 % = 0.0113 %

... of the annual Austrian CO₂ emissions: 72.8 million tonnes (Umweltbundesamt 2024b)

→ Cable cars, ski lifts and snowmaking contribute one ten thousandth to Austria's annual CO2-emissions!

Discussion: Austria vs. Canada

A current study (Knowles et al., 2023) allows us to compare snowmaking in Austria and Canada.

AUSTRIA (AUT)

Skier Visits per Year

✓ 49.5 million Season 2022/23 (Vanat, 2024)

Water demand for snowmaking

✓ 43.4 million m³

Energy consumption (snowmaking)

✓ 273 GWh

CO₂ emissions (snowmaking)

- ✓ 2,751 tons
- ✓ 56 g per skier visit

CANADA (CAN)

Skier Visits per Year

✓ 21.1 million Season 2022/23 (Vanat, 2024)

Water demand for snowmaking

 $\checkmark 43.4 \text{ million } m^3 \text{ (Knowles et al., 2023)}$

Energy consumption (snowmaking)

✓ 478 GWh (Knowles et al., 2023)

CO₂ emissions (snowmaking)

- ✓ 130,095 tons (Knowles et al., 2023)
- ✓ 6.2 kg per skier visit

→ In CAN, the CO₂ footprint of snowmaking – adjusted for skier visits – is more than 100 times higher! Reasons for this may include: A "greener" mix of electricity in Austria and more efficient snowmaking systems.

Discussion: Water

The average annual precipitation in Austria is 1136 mm (Chimani et al. 2016). With an area of 83,878 km² (Bundesministerium für Arbeit und Wirtschaft 2024), there is an annual rainfall of 95,285,408,000 m³.

Annual rainfall AUT

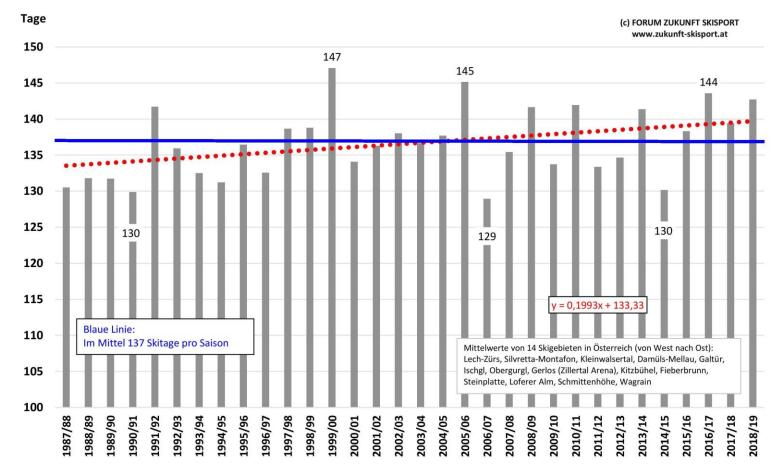
95.3 billion m³

Water requirement for snowmaking

43.4 million m³

The water requirement is 0.046 % of the annual precipitation

- → In Austria, 4.6 ten thousandths of the annual precipitation is used for snowmaking. For every liter of precipitation, less than 5% of the volume of a thimble is used for snowmaking.
- \rightarrow After the snow melts, this water returns to the natural water cycle completely, unchanged and drinkable.
- \rightarrow The water requirement for snowmaking is an example of a functioning circular economy.



Skigebiete Österreich: Tage mit Skibetrieb pro Saison

32 Jahre: 1987/88 bis 2018/19

This graph shows the development of ski season lengths in 14 Austrian ski areas from 1987/88 to 2018/19 (pre-covid).

Snowmaking has made it possible for the length of the ski seasons to be emancipated from meteorological developments.

- ✓ The consumption data for snowmaking in Austria assumed in the literature appear to be too high.
- ✓ Snowmaking seems to be more sustainable and greener than expected.
- ✓ Snowmaking only makes a negligible contribution to increasing the CO₂ concentration in the atmosphere. It is not an example of a maladaptation.
- Prejudices against snowmaking need to be broken down: with transparent, fact-based information. Due to the lack of empirical data, the discussions of the past decades seem to have been based on emotions and assumptions.
- ✓ Both the public and scientific debate about snowmaking need an updated discussion which includes concrete data.

Bundesministerium für Klimaschutz (2024): Total energy consumption in Austria. Link: https://energie.gv.at/strom/strom#:~:text=Energetischer%20Stromendverbrauch%202022,18%2C8%20Prozent%20an%20Dienstleistungen

Bundesministerium für Nachhaltigkeit und Tourismus (2018) Statusbericht zu den CO2-Emissionen neu zugelassener Pkw in Österreich im Jahr 2018. Das PDF kann gegoogelt und downgeloaded werden. Letzter Zugriff: 31. Oktober 2023. Darin steht auf Seite 5: "Die Flotte neuer Benzin- und Diesel-Pkw erreicht im Mittel 126,6 g/km."

Bundesministerium für Arbeit und Wirtschaft (2024): Geografie und Bevölkerung. Link: <u>https://www.migration.gv.at/de/leben-und-arbeiten-in-oesterreich/oesterreich-stellt-sich-vor/geografie-und-bevoelkerung/#:~:text=%C3%96sterreich%20hat%20eine%20FI%C3%A4che%20von,%2C6%20%25%20der%20Gesamtbev%C3%B6lkerung).</u>

Chimani B. et al. (2016): Endbericht ÖKS15 – Klimaszenarien für Österreich. Daten, Methoden und Klimaanalyse. Wien. https://data.ccca.ac.at/dataset/endbericht-oks15-klimaszenarien-fur-osterreich-daten-methoden-klimaanalyse-v01

Die ZEIT (2022) Skifahren und Nachhaltigkeit. Darf man das noch? Article by Uwe Jean Heuser published on February 12th, 2022. Accessed 05 July 2023. https://www.zeit.de/2022/07/skifahren-nachhaltigkeit-wintersport-skigebiete

Knowles, N., Scott, D. & Steiger, R. (2023) Sustainability of Snowmaking as Climate Change (mal)Adaptation: An Assessment of Water, Energy, and Emissions in Canada's Ski Industry. Current Issues in Tourism

Olefs, M., Formayer, H., Gobiet, A., Marke, T. and Schöner, W. (2021) Klimawandel – Auswirkungen mit Blick auf den Tourismus. In: Pröbstl-Haider, U., Lund-Durlacher, D., Olefs, M. & Prettenthaler, F. (Hrsg.) Tourismus und Klimawandel; Österreichischer Special Report Tourismus und Klimawandel (SR 19), Springer Verlag, S. Heidelberg, p. 19-46. <u>https://link.springer.com/book/10.1007/978-3-662-61522-5</u>

Scott, D., Knowles, N. & Steiger, R. (2022) Is snowmaking climate change maladaption? Journal of Sustainable Tourism

Steiger, R. & Mayer, M. (2008) Snowmaking and Climate Change. Mountain Research and Development 28(3), p. 292-298. <u>https://doi.org/10.1659/mrd.0978</u>

Steiger, R., Pröbstl-Haider, U. & Prettenthaler, F. (2021) Outdooraktivitäten und damit zusammenhängende Einrichtungen im Winter. In: Pröbstl-Haider, U., Lund-Durlacher, D., Olefs, M. & Prettenthaler, F. (Hrsg.) Tourismus und Klimawandel; Österreichischer Special Report Tourismus und Klimawandel (SR 19), Springer, S. Heidelberg, S. 109-122. https://link.springer.com/book/10.1007/978-3-662-61522-5

Umweltbundesamt (2024a): Greenhouse gas calculator. Link: https://secure.umweltbundesamt.at/co2mon/co2mon.html

Umweltbundesamt (2024b): Total annual CO₂ emissions in Austria, calculated for the year 2022. Link: https://www.umweltbundesamt.at/klima/treibhausgase

Vanat, L. (2023): 2023 International Report on Snow and Mountain Tourism. Link: www.vanat.ch

WKO (2023a) The average of Austrian skier visits in the 5 seasons before Covid (2014/15 to 2018/19) and the first season after the pandemic (2022/23) is 52.5 million. The data was sent by Erik Wolf via email. He is the Managing Director of the Association of Cable Cars in Austria (WKO – Fachverband der Seilbahnen).

WKO (2023b) Wirtschaftskammer Österreich – Fachverband der Seilbahnen; Austrian Chamber of Commerce – Association of Ropeways. Wie nachhaltig ist unser Skibetrieb? PDF of 168 pages, published in September 2023.

ZAMG (2022): Schnee im Klimawandel. https://www.zamg.ac.at/cms/de/klima/news/schnee-im-klimawandel

Thank you for your attention!